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Community Surveys:
First Survey

• Sufficiency of SE Knowledge
• Personally - 92% said yes 
• CSE community - 63% said yes

• Research vs. Production

• Reported 4 Key Problems
• Rework
• Performance issues
• Regression
• Forgetting to fix bugs not tracked 4



Community Surveys:
Second Survey

• Broad subset of Computational Science 
audience – 151 responses

• Level of usage of various SE practices

• Generally agreed with our definitions of 
SE terminology
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Community Surveys:
Second Survey
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Carver,	J.,	et	al.	“Self-Perceptions	about	Software	Engineering:	A	Survey	of	Scientist	and	
Engineers.”	Computing	in	Science	&	Engineering,	15(1):7-11



Case Studies



Case Studies:
Goals

• Support scientific developers

• Gather information about effective and 
ineffective practices

• Understand and document software 
development practices 

• Provide feedback to teams



Case Studies
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Case Studies
Lessons Learned



Lessons Learned:
Validation and Verification
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http://dilbert.com/strip/2010-11-07



Lessons Learned:
Validation and Verification

• Vary in formality and completeness
• Core algorithms vs. User Interactions
• Percentage of code tested
• Dedicated testers vs. End users

• Required by sponsor?

• Existing verification techniques not useful

12

“V&V	is	very	hard	because	it	is	hard	to	come	up	with	good	test	
cases”



Lessons Learned:
Validation and Verification

13

“I	have	tried	to	position	CONDOR	to	the	place	where	it	is	kind	of	like	
your	trusty	calculator	– it	is	an	easy	tool	to	use.	Unlike	your	
calculator,	it	is	only	90%	accurate	…	you	have	to	understand	that	
then	answer	you	are	going	to	get	is	going	to	have	a	certain	level	of	
uncertainty	in	it.	The	neat	thing	about	it	is	that	it	is	easy	to	get	an	
answer	in	the	general	sense	<to	a	very	difficult	problem>.”

“We	have	a	rule	of	thumb.	We	plot	2	lines	(from	Matlab and	C++	
programs)	and	if	close,	then	it	is	ok.”

“It	is	an	engineering	judgment	as	to	which	errors	are	important	and	
which	ones	are	on	the	margins”



Lessons Learned:
Validation and Verification

• Implications
• Traditional software testing methods are not 

sufficient
• Need methods that ensure the quality and 

limits of software

• Suggestions
• Inspections
• Formal planning
• Use of regression test suites
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Lessons Learned:
Development Goals

• Multiple goals are important
• Performance – software is used on 

supercomputer
• Portability and Maintainability – platforms 

change multiple times during a project

• Success of a project depends on the ability 
to port software to new machines

• Implications
• The motivation for these projects may be 

different than for traditional IT projects
• Methods must be chosen and tailored to align 

with the overall project goals



Lessons Learned:
Agile vs. Traditional Methodologies
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http://dilbert.com/strip/2006-01-29



Lessons Learned:
Agile vs. Traditional Methodologies

• Requirements constantly change as scientific 
knowledge evolves

• “Agile” software development methods
• Tend to be more adaptable to change
• Favor individuals and practices over process and 

tools

• Teams operate with agile philosophy by 
default

• Implications
• Appropriate, flexible SE methodologies need to be 

employed for CSE software development
• Agile-inspired approaches may be most 

appropriate 17



Lessons Learned:
Development Environments
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http://dilbert.com/strip/1992-09-08



Lessons Learned:
Development Environments

• Developers prefer flexibility of the command line over 
an Integrated Development Environment (IDE) 

• Developers believe that:
• IDEs impose too much rigidity
• They are more efficient typing than navigating menus

• Implications – developers do not adopt IDEs because:
• They do not trust the IDE to automatically perform a task 

in the same way they would do it manually
• They expect greater flexibility than is currently provided
• Prefer to use what they know rather than change

19

They	all	[the	IDEs]	try	to	impose	a	particular	style	of	development	on	me	and	I	
am	forced	into	a	particular	mode



SE4Science Workshops



SE4Science Workshop Series
http://SE4Science.org

• Facilitate interaction between SE and 
Computational Scientists

• Held at ICSE, ICCS, and SC

• Discussion Topics
• Testing scientific software
• Trade-offs between quality goals
• Research Software vs. IT Software
• Crossing the communication chasm
• Measuring impact on scientific productivity
• Reproducibility of results 21



SE4Science Workshop Series
Domain Characteristics

• Complex domains

• Main focus on science

• Long lifecycles

• Investigation of unknown introduces risk

• Unique characteristics of developers
• Deep knowledge of domain – lack formal SE
• Often the main users of the software
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SE4Science Workshop Series
Testing Scientific Software

• Stakes not high enough to make testing 
important

• Needs differ across domains

• Focus on process transparency

• Guaranteed not to give an incorrect 
output

23



SE4Science Workshop Series
Crossing the Communication Chasm

• Need to eliminate the stigma associated with SE

• Software Engineers need to 
• Understand domain constraints
• Understand specific problems
• Learn from Computational developers
• Describe SE concepts in terms familiar to 

Computational developers

• Need people with expertise in both SE & 
Computational Science

• Computational teams need:
• To realize a problem before needing help
• Real examples of SE success within their domain
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SE4Science Workshop Series
Scientific Impact

• Need to evaluate impact

• Scientific productivity ≠ Software 
productivity

• Need results in a relatively short time
• Self-assessments
• Word of mouth
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SE4Science Workshop Series
http://SE4Science.org

• Next edition – during ICSE’18

• Gothenberg, Sweden

• Please consider attending

http://SE4Science.org/workshops/
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Direct Interactions



One Possible Methodology

28

Project Team
Strengths	&	
Weaknesses	

in	
Development	

Process

Software	
Engineering	
Techniques

1.	Perform	
Case	Study

2.	Develop	
Software	

Engineering	
Techniques

3.	Deploy	
and	

Evaluate

4.	Synthesize	
Results



Successful SE/CSE Interactions:
TDD - Sandia

• Student spent semester at Sandia

• Taught and modeled TDD on a science 
code project

• Developed 2 tests for each PDE
• Small number of steps
• Whole time evolution

• Lessons Learned
• Mitigated risks in changing requirements
• Reduced developer effort
• Continuous feedback from customer



Successful SE/CSE Interactions:
TDD - Sandia

Nanthaamornphong,	A.	Carver,	J.,	et	al.	“Building	CLiiME via	Test-Driven	Development:	
A	Case	Study.”	Computing	in	Science	&	Engineering,	16(3):	36-46



Successful SE/CSE Interactions:
Peer Review - ORNL

• Student spent summer with science team 
at ORNL

• Taught team peer code review process

• Team adopted and continued on own

• Anecdotal Benefits
• Found faults that would not have been 

found with traditional testing
• Adopted coding standard for readability



Ongoing Work



“Bad By Admission” Code:

• Code that is actively recognized as 
deficient

• Indicated by TODO or FIX
• Often not fixed

• Compare Scientific and other software in 
GitHub

• Compared 10 projects
• Scientific code has 2x as many TODOs



Software Metrics in Scientific Software

• Survey of scientific software developers

• Goals
• Understand knowledge and use of metrics
• Understand perceived usefulness of metrics
• Gain some insight into software process



Software Metrics in Scientific Software:
Knowledge and Use of Metrics

Knowledge

Usefulness



Software Metrics in Scientific Software:
Knowledge and Use of Metrics

Category Number	of	Unique	
Metrics

Known
(frequency)

Used
(frequency)

Architecture 1 1 0

Code	Complexity 13 49 10

General	Quality 5 5 6

Methodology 2 3 3

Performance 9 13 17

Process 9 7 6

Recognition 5 4 4

Testing 12 20 13



Code Review in Scientific Software

• Interviews and surveys of scientific 
software developers

• Goals
• Understand code review process
• Understand impacts and expectations
• Understand barriers
• Identify areas of potential improvement



Code Review in Scientific Software:
Importance

• Large portion of code is reviewed

• Shared expertise improves code quality

• Consistent style and reusability

• Good for new contributors and tricky 
features

• Saves debugging time



Code Review in Scientific Software:
Challenges

• Underlying science viewed as more 
important than code

• Developers are attached to the way they 
have done things and resist change

• Lack of time and qualified contributors

• Lack of enough people to properly review

• Obtaining reviewer agreement



Summary

• Scientific Software Engineering needs:
• Diverse
• Deep

• Unique problems that lack simple solutions

• Successful interactions require
• Time
• Openness to new ideas

@SE4Science carver@cs.ua.edu
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