
What We Have Learned 
About Using Software 

Engineering Practices in 
Scientific Software

Jeffrey Carver
University of Alabama

carver@cs.ua.edu

November 29, 2017

1243887,	1445344

@SE4Science



Scientific	Software	
Community

Surveys

Case	Studies

Workshops

Direct	Interactions



Community Surveys



Community Surveys:
First Survey

• Sufficiency of SE Knowledge
• Personally - 92% said yes 
• CSE community - 63% said yes

• Research vs. Production

• Reported 4 Key Problems
• Rework
• Performance issues
• Regression
• Forgetting to fix bugs not tracked 4



Community Surveys:
Second Survey

• Broad subset of Computational Science 
audience – 151 responses

• Level of usage of various SE practices

• Generally agreed with our definitions of 
SE terminology

5



Community Surveys:
Second Survey

6

Carver,	J.,	et	al.	“Self-Perceptions	about	Software	Engineering:	A	Survey	of	Scientist	and	
Engineers.”	Computing	in	Science	&	Engineering,	15(1):7-11



Case Studies



Case Studies:
Goals

• Support scientific developers

• Gather information about effective and 
ineffective practices

• Understand and document software 
development practices 

• Provide feedback to teams



Case Studies

9



Case Studies
Lessons Learned



Lessons Learned:
Validation and Verification

11

http://dilbert.com/strip/2010-11-07



Lessons Learned:
Validation and Verification

• Vary in formality and completeness
• Core algorithms vs. User Interactions
• Percentage of code tested
• Dedicated testers vs. End users

• Required by sponsor?

• Existing verification techniques not useful

12

“V&V	is	very	hard	because	it	is	hard	to	come	up	with	good	test	
cases”



Lessons Learned:
Validation and Verification

13

“I	have	tried	to	position	CONDOR	to	the	place	where	it	is	kind	of	like	
your	trusty	calculator	– it	is	an	easy	tool	to	use.	Unlike	your	
calculator,	it	is	only	90%	accurate	…	you	have	to	understand	that	
then	answer	you	are	going	to	get	is	going	to	have	a	certain	level	of	
uncertainty	in	it.	The	neat	thing	about	it	is	that	it	is	easy	to	get	an	
answer	in	the	general	sense	<to	a	very	difficult	problem>.”

“We	have	a	rule	of	thumb.	We	plot	2	lines	(from	Matlab and	C++	
programs)	and	if	close,	then	it	is	ok.”

“It	is	an	engineering	judgment	as	to	which	errors	are	important	and	
which	ones	are	on	the	margins”



Lessons Learned:
Validation and Verification

• Implications
• Traditional software testing methods are not 

sufficient
• Need methods that ensure the quality and 

limits of software

• Suggestions
• Inspections
• Formal planning
• Use of regression test suites

14



Lessons Learned:
Development Goals

• Multiple goals are important
• Performance – software is used on 

supercomputer
• Portability and Maintainability – platforms 

change multiple times during a project

• Success of a project depends on the ability 
to port software to new machines

• Implications
• The motivation for these projects may be 

different than for traditional IT projects
• Methods must be chosen and tailored to align 

with the overall project goals



Lessons Learned:
Agile vs. Traditional Methodologies

16

http://dilbert.com/strip/2006-01-29



Lessons Learned:
Agile vs. Traditional Methodologies

• Requirements constantly change as scientific 
knowledge evolves

• “Agile” software development methods
• Tend to be more adaptable to change
• Favor individuals and practices over process and 

tools

• Teams operate with agile philosophy by 
default

• Implications
• Appropriate, flexible SE methodologies need to be 

employed for CSE software development
• Agile-inspired approaches may be most 

appropriate 17



Lessons Learned:
Development Environments

18

http://dilbert.com/strip/1992-09-08



Lessons Learned:
Development Environments

• Developers prefer flexibility of the command line over 
an Integrated Development Environment (IDE) 

• Developers believe that:
• IDEs impose too much rigidity
• They are more efficient typing than navigating menus

• Implications – developers do not adopt IDEs because:
• They do not trust the IDE to automatically perform a task 

in the same way they would do it manually
• They expect greater flexibility than is currently provided
• Prefer to use what they know rather than change

19

They	all	[the	IDEs]	try	to	impose	a	particular	style	of	development	on	me	and	I	
am	forced	into	a	particular	mode



SE4Science Workshops



SE4Science Workshop Series
http://SE4Science.org

• Facilitate interaction between SE and 
Computational Scientists

• Held at ICSE, ICCS, and SC

• Discussion Topics
• Testing scientific software
• Trade-offs between quality goals
• Research Software vs. IT Software
• Crossing the communication chasm
• Measuring impact on scientific productivity
• Reproducibility of results 21



SE4Science Workshop Series
Domain Characteristics

• Complex domains

• Main focus on science

• Long lifecycles

• Investigation of unknown introduces risk

• Unique characteristics of developers
• Deep knowledge of domain – lack formal SE
• Often the main users of the software

22



SE4Science Workshop Series
Testing Scientific Software

• Stakes not high enough to make testing 
important

• Needs differ across domains

• Focus on process transparency

• Guaranteed not to give an incorrect 
output

23



SE4Science Workshop Series
Crossing the Communication Chasm

• Need to eliminate the stigma associated with SE

• Software Engineers need to 
• Understand domain constraints
• Understand specific problems
• Learn from Computational developers
• Describe SE concepts in terms familiar to 

Computational developers

• Need people with expertise in both SE & 
Computational Science

• Computational teams need:
• To realize a problem before needing help
• Real examples of SE success within their domain

24



SE4Science Workshop Series
Scientific Impact

• Need to evaluate impact

• Scientific productivity ≠ Software 
productivity

• Need results in a relatively short time
• Self-assessments
• Word of mouth

25



SE4Science Workshop Series
http://SE4Science.org

• Next edition – during ICSE’18

• Gothenberg, Sweden

• Please consider attending

http://SE4Science.org/workshops/

26



Direct Interactions



One Possible Methodology

28

Project Team
Strengths	&	
Weaknesses	

in	
Development	

Process

Software	
Engineering	
Techniques

1.	Perform	
Case	Study

2.	Develop	
Software	

Engineering	
Techniques

3.	Deploy	
and	

Evaluate

4.	Synthesize	
Results



Successful SE/CSE Interactions:
TDD - Sandia

• Student spent semester at Sandia

• Taught and modeled TDD on a science 
code project

• Developed 2 tests for each PDE
• Small number of steps
• Whole time evolution

• Lessons Learned
• Mitigated risks in changing requirements
• Reduced developer effort
• Continuous feedback from customer



Successful SE/CSE Interactions:
TDD - Sandia

Nanthaamornphong,	A.	Carver,	J.,	et	al.	“Building	CLiiME via	Test-Driven	Development:	
A	Case	Study.”	Computing	in	Science	&	Engineering,	16(3):	36-46



Successful SE/CSE Interactions:
Peer Review - ORNL

• Student spent summer with science team 
at ORNL

• Taught team peer code review process

• Team adopted and continued on own

• Anecdotal Benefits
• Found faults that would not have been 

found with traditional testing
• Adopted coding standard for readability



Ongoing Work



“Bad By Admission” Code:

• Code that is actively recognized as 
deficient

• Indicated by TODO or FIX
• Often not fixed

• Compare Scientific and other software in 
GitHub

• Compared 10 projects
• Scientific code has 2x as many TODOs



Software Metrics in Scientific Software

• Survey of scientific software developers

• Goals
• Understand knowledge and use of metrics
• Understand perceived usefulness of metrics
• Gain some insight into software process



Software Metrics in Scientific Software:
Knowledge and Use of Metrics

Knowledge

Usefulness



Software Metrics in Scientific Software:
Knowledge and Use of Metrics

Category Number	of	Unique	
Metrics

Known
(frequency)

Used
(frequency)

Architecture 1 1 0

Code	Complexity 13 49 10

General	Quality 5 5 6

Methodology 2 3 3

Performance 9 13 17

Process 9 7 6

Recognition 5 4 4

Testing 12 20 13



Code Review in Scientific Software

• Interviews and surveys of scientific 
software developers

• Goals
• Understand code review process
• Understand impacts and expectations
• Understand barriers
• Identify areas of potential improvement



Code Review in Scientific Software:
Importance

• Large portion of code is reviewed

• Shared expertise improves code quality

• Consistent style and reusability

• Good for new contributors and tricky 
features

• Saves debugging time



Code Review in Scientific Software:
Challenges

• Underlying science viewed as more 
important than code

• Developers are attached to the way they 
have done things and resist change

• Lack of time and qualified contributors

• Lack of enough people to properly review

• Obtaining reviewer agreement



Summary

• Scientific Software Engineering needs:
• Diverse
• Deep

• Unique problems that lack simple solutions

• Successful interactions require
• Time
• Openness to new ideas

@SE4Science carver@cs.ua.edu



Acknowledgements

• Roscoe Bartlett
• Victor Basili
• Neil Chue Hong
• Nasir Eisty – PhD student
• Thomas Epperly
• Christine Halverson
• Dustin Heaton – Former PhD student
• Lorin Hochstein
• Jeff Hollingsworth
• Dan Katz
• Richard Kendall
• Karla Morris
• Aziz Nanthaamornphong - Former PhD student
• Damian Rouson
• Forrest Shull
• Susan Squires
• Doug Post
• Marvin Zelkowitz



Further Readings:
Community Surveys

• Carver, J., Heaton, D., Hochstein, L., Bartlett, R. "Self-Perceptions about 
Software Engineering: A Survey of Scientists and Engineers." Computing in 
Science and Engineering. 15(1): 7-11. Jan/Feb 2013.

• Dustin Heaton, Jeffrey Carver, Roscoe Bartlett, Kimberly Oakes and Lorin
Hochstein. “The Relationship Between Development Problems and Use of 
Software Engineering Practices in Computational Science.” Proceedings of the 
First Workshop on Maintainable Software Practices in e-Science.

42



Further Readings:
SE for CSE

• Carver, J., Kendall, R., Squires, S. and Post, D. “Software Development 
Environments for Scientific and Engineering Software: A Series of Case 
Studies.” Proceedings of the 2007 International Conference on Software 
Engineering. Minneapolis, MN. May 23-25, 2007. p. 550-559.

• Basili, V., Carver, J., Cruzes, D., Hochstein, L., Hollingsworth, J., Shull, F. and 
Zelkowitz, M. "Understanding the High Performance Computing Community: 
A Software Engineer's Perspective." IEEE Software, 25(4): 29-36. 
July/August 2008. 

• Carver, J., Hochstein, L., Kendall, R., Nakamura, T. Zelkowitz, M., Basili, V. 
and Post, D. “Observations about Software Development for High End 
Computing.” CTWatch Quarterly. November, 2006. p. 33-37. (Invited Paper).

• Hochstein, L., Nakamura, T., Basili, V., Asgari, S., Zelkowitz, M. Hollingsworth, 
J., Shull, F., Carver, J., Voelp, M., Zazworka, N., and Johnson, P. “Experiments 
to Understand HPC Time to Development.” CTWatch Quarterly. 2(4A): 24-32. 
November, 2006

43



Further Readings:
SE-CSE Workshops

• Carver, J., Chue Hong, N., and Ciraci, S. "Software Engineering for CSE." 
Scientific Programming. Volume 2015. Article ID 591562. DOI: 
10.1155/2015/591562 

• Carver, J. and Epperly, T. "Software Engineering for Computational 
Science and Engineering [Guest editors' introduction]." Computing in 
Science and Engineering. 16(3):6-9. May/June 2014. 

• Carver, J. “Software Engineering for Computational Science and 
Engineering.” (Guest Editor’s Introduction). Computing in Science and 
Engineering, 14(2):8-11. March/April 2012.

• Carver, J. “Software engineering for computational science and 
engineering,” Computing in Science & Engineering, vol. 14, no. 2, pp. 8–
11, 2011.

• Carver, J. “Report from the Second International Workshop on Software 
Engineering for Computational Science and Engineering (SE-CSE 09).” 
Computing in Science & Engineering. 11(6): 14-19. Nov/Dec. 2009.

• Carver, J. "First International Workshop on Software Engineering for 
Computational Science and Engineering." Computing in Science & 
Engineering. 11(2): 8-11. March/April 2009.

44



Further Readings:
Case Studies

• Kendall, R., Carver, J., Fisher, D., Henderson, D., Mark, A., Post, D., 
Rhoades, C. and Squires, S. "Development of a Weather 
Forecasting Code: A Case Study." IEEE Software, 25(4): 59-65. 
July/August 2008.

• Kendall, R.P., Carver, J., Mark, A., Post, D., Squires, S., and Shaffer, 
D. Case Study of the Hawk Code Project. Technical Report, LA-UR-
05-9011. Los Alamos National Laboratories: 2005. 

• Kendall, R.P., Mark, A., Post, D., Squires, S., and Halverson, C. 
Case Study of the Condor Code Project. Technical Report, LA-UR-
05-9291. Los Alamos National Laboratories: 2005. 

• Kendall, R.P., Post, D., Squires, S., and Carver, J. Case Study of the 
Eagle Code Project. Technical Report, LA-UR-06-1092. Los Alamos 
National Laboratories: 2006. 

• Post, D.E., Kendall, R.P., and Whitney, E. "Case study of the Falcon 
Project". In Proceedings of Second International Workshop on 
Software Engineering for High Performance Computing Systems 
Applications (Held at ICSE 2005). St. Louis, USA. 2005. p. 22-26

45



Further Readings:
Community Interactions

• Nanthaamornphong, A.; Morris, K.; Rouson, D.W.I.; Michelsen, 
H.A., "A case study: Agile development in the community laser-
induced incandescence modeling environment (CLiiME)," 5th 
International Workshop on Software Engineering for 
Computational Science and Engineering (SE-CSE), 2013. doi: 
10.1109/SECSE.2013.6615094


